Paylaş
 
Türkiyedeki Madenler
 
  Ana Sayfa
  İletişim
  Reklam Vermek
  Madenler
  Resimler
  Haritada
  Türkiye'de Çıkarılanlar
  Türkiye'de Madencilik
  Toryum
  Uranyum
  Bor
  Doğal Gaz
  Bakır
  Linyit
  Bor Minarelleri
  Madenler ve Enerji Kaynakları
  Mermer
  Fosfat
Toryum

Toryum

Vikipedi, özgür ansiklopedi
Git ve: kullan, ara

Toryum (Th)

H Periyodik cetvel He
Li Be   B C N O F Ne
Na Mg   Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba   Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra   Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo  
 
  La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
  Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr  


 

Temel özellikleri
Atom numarası 90
Element serisi Aktinitler
Grup, periyot, blok 2, 7, f
Görünüş Gümüşî beyaz
Toryum
Atom ağırlığı 232.0381 g/mol
Elektron dizilimi Rn6d2 7s2
Enerji seviyesi başına
Elektronlar
2, 8, 18, 32, 18, 10, 2
Fiziksel Özellikleri
Maddenin hali katı
Yoğunluk 11.7 g/cm³
Sıvı haldeki yoğunluğu 1.378 g/cm³
Ergime noktası 2115 °K
1842 °C
3348 °F
Kaynama noktası 5061 °K
4788 °C
8650 °F
Ergime ısısı 13.81 kJ/mol
Buharlaşma ısısı 514 kJ/mol
Isı kapasitesi (25 °C) 26.230 J·mol−1·K−1 (25 °C) J/(mol·K)
Atom özellikleri
Kristal yapısı Kübik
Yükseltgenme seviyeleri (4-)
Elektronegatifliği 1.3 Pauling ölçeği
İyonlaşma enerjisi 1930 kJ/mol
Atom yarıçapı 179 pm
Atom yarıçapı (hes.) 194 pm
Kovalent yarıçapı 206±6 pm
Van der Waals yarıçapı  ? pm
Diğer özellikleri
Elektrik direnci (0 °C) 147 nΩ·m nΩ·m (20°C'de)
Isıl iletkenlik (300 K) 54.0 W·m−1·K−1 W/(m·K)
Isıl genleşme 11.0 µm·m−1·K−1 µm/(m·K) (25°C'de)
Ses hızı 2490 m/s m/s (20 °C'de)
Mohs sertliği 3.0
Vickers sertliği 350 MPa
Brinell sertliği 4 MPa

Toryum (Th). Atom numarası 90, atom ağırlığı yaklaşık 232 g/mol olan, 11,7 g/mL yoğunluğunda, 1700 °C de eriyen,, kurşun renginde, havada bozulmaz, atom enerjisi kaynağı olarak kullanılan radyoaktif bir elementtir.

Toryum kendiliğinden bölünebilme yeteneğine sahip değildir. Bu yüzden doğrudan nükleer yakıt olarak kullanılamaz. 232Th (toryum-232) izotopunun, bir nötron yutarak, fisyon yapabilen (fisil) bir izotop olan 233U'e dönüştürülmesi gerekir. 232Th'nin düşük enerjili nötronlarla reaksiyonu (nötron yutumu) sonucunda, önce kararlılığı daha az olan 233Th oluşur.

Yarılanma süresi 23 dakika olan 233Th ise, bir beta parçacığı (b) yayarak, yarılanma süresi 27 gün olan, 233Pa'a dönüşür. 233Pa, bir beta ve gama parçacığı (g) yayarak bölünebilen 233U'a (yarılanma süresi 163 bin yıl) dönüşmektedir. Böylece 232Th, 235U veya 239Pu (plütonyum-239) gibi bir fisil maddeyle birlikte kullanılır.

Toryum yakıt döngüsünde uranyumdan daha az plütonyum ve diğer trans-uranyum elementleri üretildiğinden, toryum, nükleer santrallerin en temiz yakıtı olarak kabul edilir. Çevreye daha az zarar vermesi açısından da ileride nükleer reaktörlerde uranyum yerine kullanılması düşünülmektedir.

Toryumun nükleer yakıt olarak kullanılması ile ilgili çalışmalar halen devam etmektedir. Ancak günümüzde toryumla çalışan ticarî ölçekli bir nükleer reaktör bulunmamaktadır.

                  Yakıt olarak kullanım denemeleri ==

Toryumlu yakıt denemeleri 1960 yıllarının ortalarında başlamış olmasına rağmen güç reaktörlerinde kullanılmasına 1976 yılında başlanmıştır. Almanya, Hindistan, Japonya, Rusya, İngiltere ve ABD’de araştırma/geliştirme çalışmaları sürdürülmektedir. Almanya’da geliştirilen 300 MWe gücündeki toryum yüksek sıcaklık reaktörü, yarısından fazlası Th/U olan yakıtla 19831989 yılları arasında başarıyla işletilmiştir. 60 MWe Lingen kaynar sulu reaktöründe ise Th/Pu tabanlı yakıt test elemanı kullanılmıştır.

ABD'de Shippingport reaktöründe, toryum tabanlı yakıtların basınçlı su reaktörlerindeki kullanımı incelenmiş ve toryum kullanımının işletme stratejisi veya reaktör kalbi güvenlik sınırlarını etkilemediği sonucuna varılmıştır. 19771982 yılları arasında hafif sulu üretken reaktör anlayışı da bu reaktörde başarıyla denenmiştir.


 


 

Konu başlıkları

[gizle]

Dünya toryum kaynakları [değiştir]

Toryum tabiatta uranyumdan yaklaşık üç kat daha fazla bulunur. 2006 verilerine göre Dünya'da bilinen toplam toryum rezervinin 2,5 milyon ton olduğu ve ortalama % 6–7 civarında toryum oksit içerdiği söylenebilir.

Dünya toryum kaynakları[1] [değiştir]

Ülke RAR Th (ton) EAR Th (ton)
Brezilya 606,000 700,000
Türkiye 380,000 500,000
Hindistan 319,000
Amerika Birleşik Devletleri 137,000 295,000
Norveç 132,000 132,000
Grönland 54,000 32,000
Kanada 45,000 128,000
Avustralya 19,000
Güney Afrika 18,000
Mısır 15,000 309,000
Diğer ülkeler 505,000
Dünya toplamı 2,230,000 2,130,000

Türkiye'nin toryum rezervi ve yapılan çalışmalar [değiştir]

1959 yılı sonlarına doğru Maden Tetkik ve Arama Genel Müdürlüğü (MTA) tarafından yapılan araştırmalar sonucunda, Eskişehir’e bağlı Sivrihisar ilçesinin kuzey batısında,Karaburhan, Kızılcaören, Karkın ve Okçu Köyleri arasında yer alan 15 km2‘lik bir sahada, toryumun yanı sıra nadir toprak elementleri, barit ve fluorit de içeren karmaşık yapılı yataklara rastlanmıştır.

1977 yılında MTA tarafından hazırlanan rapora göre bölgedeki cevherin ortalama tenörü % 0,21 ThO2 olup, toplam rezerv yaklaşık 380.000 ton ThO2 civarındadır. Toryum, monazit ve torobastnazit minerallerinin kafes yapısında yer almaktadır.

Toryum tenörü, seçme numunelerde % 3′e kadar çıksa da yatağın ortalaması %0,2′dir. Toryum ihtiva eden Sivrihisar cevher yatağındaki, Yaylabaşı ve Kocayayla bölgelerinde yeterli sayıda sondaj yapılamadığından bu bölgelere ait kesin rezerv tespiti mevcut değildir. Bu bölgelerle birlikte, Kuluncak, Hekimhan, Malatya, Felahiye, Kayseri ile Sivas ve Diyarbakır il sınırları içinde rastlanan toryum yataklarında gerekli çalışmaların yapılması sonucunda, Türkiye'nin toryum rezervinin artacağı tahmin edilmektedir. Bulunan ve araştırılmakta olan toryum yatakları ile, Türkiye’nin, dünyanın en büyük toryum rezervine sahip ülkelerden biri konumunda olduğu söylenebilir.

Teknolojik sorunların çözülebilmesi şartıyla, Türkiye, nükleer enerji hammaddesi olan toryum açısından önemli bir potansiyele sahiptir ve zenginlik sınıflandırmasında toryum madeni çok zengin maden sınıfında bulunmaktadır. Dünya maden potansiyeli içerisinde Türkiye'nin payına bakıldığında ise, toryum (basnazit) madeninde önemli miktarda rezerve sahip olduğu görülmekte ve rekabet gücünün yüksek olduğu anlaşılmaktadır. Ancak ortalama tenörün düşüklüğü (%0,2) ve rezervin yapısının karmaşık olması, toryumun tek başına ekonomik olarak çıkarılabilirliğini güçleştirmektedir.

Eskişehir'deki Sivrihisar yöresi cevherinde bulunan mineraller ile nadir toprak elementleri ve toryumun ayrılma/saflaştırma teknolojisinin geliştirilmesi konusundaki çalışmalar 2003 yılından beri Türkiye Atom Enerjisi Kurumu (TAEK), MTA ve ETİ Holding tarafından ortaklaşa yürütülmektedir. Bu çalışmalar sonucunda elde edilmesi planlanan toryum oksidin ayrılma/saflaştırma teknolojisinin geliştirilmesi ile enerji sektöründe kullanılabilirliği araştırmaları, TAEK’de Nükleer Yakıt Teknolojisi Geliştirilmesi projesi kapsamında yürütülmektedir. Eti Maden İşletmeleri Genel Müdürlüğü’ne ait bu maden sahasında, 9. Kalkınma Planı döneminde (2007 – 2013), gerekli yatırımlar yapılarak üretime geçilebileceği tahmin edilmektedir.

Aralık 2007′de yapılan çalışmalar hakkında bilgi veren Türkiye Cumhuriyeti Enerji ve Tabii Kaynaklar Bakanı Hilmi Güler, Bakanlık olarak toryumun nükleer enerji üretiminde kullanılması konusunda 90′lı yıllardan beri önemli çalışmalar yaptıklarını, toryumu nadir toprak elementlerinden ayrıştırmayı başardıklarını söyledi. [kaynak belirtilmeli]

Nükleer yakıt olarak kullanılan uranyumla ilgili yakıt teknolojisi pek çok ülkede mevcuttur. Üretilen yakıt uranyum fiyatları ise düşük oranlarda (Ekim 2005’de 81,25 $ / kgU) seyretmektedir. [kaynak belirtilmeli] Dünyadaki uranyum stoklarının ve rezervin fazlalığı nedeniyle görünür gelecekte yakıt maliyetinde fazla bir değişim beklenmemektedir. Ayrıca nükleer enerjide yakıt maliyetinin toplam üretim maliyeti içindeki yeri de oldukça azdır (yaklaşık % 10–12). Bu arada, nükleer santrallerin bir özelliği de taze yakıtın kolayca depolanabilmesidir. Böylelikle uzun süre yakıt üreticilerine bağlı kalmadan enerji üretimi mümkün olmaktadır. Bu gerçekler ışığında, dünyada uranyuma olan talebin devam edeceğinin kaçınılmaz olduğu söylenebilir.

Kaynaklar [değiştir]

  1. ^ [1]
Reklam Alanı  
   
Twitter  
   
Habertürk  
 
Habertürk
Haberler .
 
Bugün 3 ziyaretçi (4 klik) kişi burdaydı!
Paylaş Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol